PIC10A 1C. Week 6b Problems. TA: Eric Kim. [Solutions]

1. Vowel Counter

Write a program that, given a user-inputted string, counts the number of vowels. Assume that

the user only inputs text in lowercase. For instance, here is an example expected output:
Please enter a word: apple
The word "apple" has 2 vowels.

[Solution]

finclude <iostream>

#include <string>

using namespace std;

int main () {
cout << "Please enter a word: ";
string wd; cin >> wd;
for (char c : wd) {
if ((c == 'a'") [l (c == "Te") || (c == "'1")
[l (c == "0") |l (c == "u")) {
cnt = cnt + 1;
}
}
cout << "The word \"" << wd << "\" has " << cnt << " vowels.";
cin.ignore () ; cin.get ();

return 0O;

2. Loopy

Rewrite the following while loop as an equivalent do-while loop and for loop:
int i = 0; int n = 20; int acc = 0;

while (i < n) {

acc = acc + (2*i);

if (acc > 10) {
break;

i += 1;

// As a do-while loop: INSERT CODE BELOW
[Solution]
int 1 = 0; int n = 20; int acc = 0;
do {
if (i >= n)
break;
acc = acc + (2*i);

if (acc > 10)
break;
i += 1;
} while (i < n);

// As a for loop: INSERT CODE BELOW

[Solution]
int 1 = 0; int n = 20; int acc = 0;
for (1 = 0; 1 < n; 1 += 1) {
acc = acc + (2*i);
if (acc > 10)
break;

Part 2: Louis Reasoner suggests the following answers:

do {
acc = acc + (2*1);
i +=1;
} while ((i < n) && (acc <= 10));
for (int i = 0; i < n; i += 1) {
acc = acc + (2*i);
if (acc > 10)
break;
}
for (int 1 = 0; (i < n)&&(acc <= 10); 1 += 1) {
acc = acc + (2*i);

Are these equivalent to the original while loop? If so, explain why. If not, describe why not.

Hint: consider the values of acc and i at the end of the original while loop.

[Solution]

All are not equivalent. Note that, after the original while loop terminates, acc will be 12, and i will
be 3.

After the do-while loop terminates, i will be at 4. This is because the do-while loop increments i
before checking if (acc > 10), whereas the original while loop checked (acc > 10) first.

Also, the original while loop will never run the body if (i >= n), ie if i starts off at, say, 40.
However, do-while loops always run the body at least once.

The first for loop is incorrect because, after the for loop terminates, i is 0. This is because we
create a new "int i = 0" within the for loop's scope, which disappears once the for loop
terminates.

The second for loop is incorrect because i is incremented to 4 (instead of 3). This is because,
like in the do-while loop, the condition (acc <= 10) is checked *after* incrementing i += 1,
whereas the original while loop checks (acc < 10) before incrementing i += 1.

3. Forward Back

Write a program that, given a user-inputted string, repeats the string in the following pattern:
Please enter a word: Apple
A

P

p
A

Hint: Recall the <iomanip> library, ie: setw(), seffill().
[Solution]

#include <iostream>

#include <iomanip>

using namespace std;

int main () {

cout << "Please enter a word: ";

string wd; cin >> wd;
/* Print it forward once */
for (size t i = 0; 1 < wd.size(); ++1i) {
cout << setw(i+l) << setfill (' ") << wd[i] << endl;

}
/* Print it backwards once */
// Start i1 at 1 to not repeat last letter

for (size t 1 = 1; 1 < wd.size(); ++i) {
int bi = wd.size() - 1 - 1; // Backward index
cout << setw(bi + 1) << setfill (' ') << wd[bi] << endl;

}
cin.ignore () ;
cin.get () ;
return O;

4. Debugging

Louis Reasoner wants to write a program that, given a user-inputted string, outputs it in reverse
order. He thinks to himself, "A-ha! I'll just write a for-loop that traverses the string in reverse
order!". He writes the following program:

int main () {
cout << "Enter a word: ";
string wd; cin >> wd;
for (size t i = (wd.size()-1); 1 >= 0; --1i) {
cout << wdl[i];

}

return O;

When he runs the program, the program correctly outputs the string in reverse order, but then
quickly crashes. The error message complains about a string index out of bounds error. What
could be the problem? Can you fix the code?
[Solution]
Recall that size tis an unsigned type! When i becomes 0, and we output the first character of
wd, the for loop then decrements i by 1. Since i is unsigned, it can't take on negative values -
thus, it instead wraps around to the largest positive value (ie ~4 billion), and since a large
positive value is greater than or equal to 0, we run the body again, causing an error when we try
to access the ~4 billion-th entry of wd.
To fix this bug, we can do the following:
for (size t 1 = (wd.size()-1); 1 > 0; —--1) {
cout << wdl[i];
}
cout << wd[0]; // Handle separately
Or, we can do the following:
for (size t i = 0; 1 < wd.size(); ++1i) {
size t bi = wd.size() - i - 1; // Backwards index
cout << wdl[i];

